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Abstract

The flow of viscous incompressible micropolar fluid past a semi-infinite vertical porous plate is investigated with the

presence of thermal radiation field, taking into account the progressive wave type of disturbance in the free stream. The

effects of flow parameters and thermophysical properties on the flow and temperature fields across the boundary layer

are investigated. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically thick

fluids. Numerical results of velocity profile of micropolar fluids are compared with the corresponding flow problems for

a Newtonian fluid. It is observed that, when the radiation parameter increases the velocity and temperature decrease in

the boundary layer, whereas when Grashof number increases the velocity increases.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The study of flow and heat transfer for an electrically

conducting fluid past a porous plate has attracted the

interest of many investigators in view of its applications

in many engineering problems such as oil exploration,

geothermal energy extractions and the boundary layer

control in aerodynamics [1–4]. Specifically, Soundalge-

kar [1] obtained approximate solutions for the two-

dimensional flow of an incompressible, viscous fluid flow

past an infinite porous vertical plate with constant suc-

tion velocity normal to the plate. He found that the

difference between the temperature of the plate and the

free stream is significant to cause the free convection

currents. Kim [3] studied the unsteady free convection

flow of a micropolar fluid through a porous medium

bounded by an infinite vertical plate. Raptis [4] studied

numerically the case of a steady two-dimensional flow of

a micropolar fluid past a continuously moving plate with

a constant velocity in the presence of thermal radiation.

Gorla and Tornabene [5] investigated the effects of

thermal radiation on mixed convection flow over a

vertical plate with nonuniform heat flux boundary

conditions.

On the other hand, heat transfer by simultaneous free

or mixed convection and thermal radiation in the case of

a micropolar fluid has not received as much attention.

This is unfortunate because thermal radiation plays an

important role in determining the overall surface heat

transfer in situations where convective heat transfer

coefficients are small. Such situations are common in

space technology [6].

In the present work we consider the case of mixed

convection flow of a micropolar fluid past a semi-infi-

nite, steadily moving porous plate with varying suction

velocity normal to the plate in the presence of thermal

radiation.

Micropolar fluids are fluids with microstructure be-

longing to a class of fluids with asymmetrical stress

tensor. Physically, they represent fluids consisting of

randomly oriented particles suspended in a viscous me-

dium [7–10]. The micropolar fluid considered here is a

gray, absorbing–emitting but non-scattering optically

thick medium. The Rosseland approximation is used to

describe the radiative heat flux in the energy equation. It
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is also assumed that the porous plate moves with con-

stant upward velocity.

2. Formulation

The formulation of a micropolar fluid theory was

attributed to Eringen [8,9] and the governing equations

in the vector fields are as follows:

dq
dt

¼ �qr � V ð1Þ

q
dV
dt

¼ �rp þ jr� x	 � ðl þ jÞr �r� V

þ ðk þ 2l þ jÞrr � V þ qf ð2Þ

qj	
dX
dt

¼ jr� V � 2jx	 � cr�r� x	

þ ðam þ bm þ cÞrðr � x	Þ þ ql ð3Þ

q
dE
dt

¼ �pr � V þ qU �r � q ð4Þ

where

qU ¼ kðr � V Þ2 þ 2lD : Dþ 4j 1
2
r
�

� V � x	�2
þ amðr � x	Þ2 þ crx	 : rx	 þ bmrx	 : ðrx	ÞT

ð5Þ

Here U is the dissipation function of mechanical energy

per unit mass, D denotes the deformation tensor;

D ¼ 1
2
ðVi;j þ Vj;iÞ. For more information about the above

results, we refer the reader to [10]. We also denote by E
the specific internal energy and by q the heat flux. Fur-
thermore, q is the density of fluid, V is the velocity

vector, x	 is the micro-rotation vector, p is the ther-

modynamic pressure, j	 is the micro-inertia, f is the

body force vector and l is the body couple vector, l is

the shear viscosity coefficient, k is the second order vis-
cosity coefficient, j is the vortex viscosity (or the micro-
rotation viscosity) coefficient, and am, bm, c are the spin
gradient coefficients, respectively. Eqs. (1)–(4) represent

conservations of mass, linear momentum, micro-inertia

and energy, respectively. We remark that for j ¼
am ¼ bm ¼ c ¼ 0 and vanishing l and f , micro-rotation
x	 becomes zero, and Eq. (2) reduces to the classical

Navier–Stokes equations. Also we note that for j ¼ 0,

the velocity V and the micro-rotation x	 are not coupled

and the micro-rotations do not affect the global motion.

Let us consider a two-dimensional, unsteady flow of

a laminar, incompressible micropolar fluid past a semi-

infinite, vertical porous plate moving steadily and sub-

jected to a thermal radiation field. The physical model

and geometrical coordinates are shown in Fig. 1. The

x	-axis is taken along the vertical plate in an upward

direction and y	-axis is taken normal to the plate. The

Nomenclature

Cf skin friction coefficient

Cp specific heat at constant pressure

Gr Grashof number

g acceleration due to gravity

k thermal conductivity

Nu Nusselt number

n parameter of micro-gyration boundary con-

dition

Pr Prandtl number

R Radiation parameter

T temperature

t time

U0 scale of free stream velocity

u, v longitudinal and transverse components of

velocity vector, respectively

V0 scale of suction velocity

x, y distances along and perpendicular to the

plate, respectively

Greek symbols

a fluid thermal diffusivity

am spin gradient viscosity

b ratio of vortex viscosity and dynamic vis-

cosity

bf coefficient of volumetric expansion of the

working fluid

bm spin gradient viscosity

d exponential index

c spin gradient viscosity

j vortex (micro-rotation) viscosity

� scalar constant (
1)

r electrical conductivity

q fluid density

l fluid dynamic viscosity

m fluid kinematic viscosity

mr fluid kinematic rotational viscosity

h temperature

x angular velocity vector

Subscripts

p plate

w wall condition

1 free stream condition

Superscripts
0 differentiation with respect to y
	 dimensional properties
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acceleration of gravity g is in a direction opposite to

x	-coordinate. It is assumed here that the size of holes
in the porous plate is much larger than a characteris-

tic microscopic length scale of the micropolar fluid to

simplify formulation of the boundary conditions. Fur-

ther, due to the semi-infinite plane surface assumption,

the flow variables are functions of normal distance y	

and time t	 only.
Under these conditions, the governing conservation

equations can be written as:

(a) continuity:

ov	

oy	
¼ 0 ð6Þ

(b) linear momentum:

ou	

ot	
þ v	

ou	

oy	
¼ � 1

q
op	

ox	
þ ðm þ mrÞ

o2u	

oy	2

þ gbfðT � T1Þ þ 2mr
ox	

oy	
ð7Þ

(c) angular momentum:

qj	
ox	

ot	

�
þ v	

ox	

oy	

�
¼ c

o2x	

oy	2
ð8Þ

(d) energy:

oT
ot	

þ v	
oT
oy	

¼ a
o2T
oy	2

�
� 1

k
oqr
oy	

�
ð9Þ

Here u	, v	 are the velocity components along x	 and y	

directions, respectively, m is the kinematic viscosity, mr is

the kinematic rotational viscosity, bf is the coefficient of
volumetric thermal expansion of the fluid, T is the

temperature, a is the effective thermal diffusivity of the
fluid, and k is the effective thermal conductivity.
By using the Rosseland approximation [11], the ra-

diative heat flux in the y	 direction is given by

qr ¼ � 4
3

rs
ke

oT 4

oy	
ð10Þ

where rs and ke are the Stefan–Boltzmann constant and
the mean absorption coefficient, respectively. It should

be noted that by using the Rosseland approximation we

limit our analysis to optically thick fluids. If the tem-

perature differences within the flow are sufficiently small,

then Eq. (10) can be linearized by expanding T 4 into the
Taylor series about T1, and neglecting higher order

terms to give [4]:

T 4 ffi 4T 31T � 3T 41 ð11Þ

The heating due to viscous dissipation is neglected

for small velocities in energy conservation Eq. (9) and

Boussinesq approximation is used to describe buoyancy

force in Eq. (7). It is assumed that the free stream

velocity (U 	
1), the suction velocity (v	) and the plate

temperature follow an exponentially increasing or de-

creasing small perturbation law.

Under these assumptions, the appropriate boundary

conditions for the velocity, microrotation and tempera-

ture fields are

u	 ¼ u	p; v	 ¼ �V0ð1þ eAed
	t	 Þ;

T ¼ Tw þ eðTw � T1Þed	t	 ;

x	 ¼ �n
ou	

oy	
at y	 ¼ 0

ð12Þ

u	 ! U 	
1 ¼ U0ð1þ eed

	 t	 Þ; T ! T1;

x	 ! 0 as y	 ! 1 ð13Þ

in which A is a real positive constant and eA small less

than unity, U0 is a scale for the free stream velocity, d	 is

the frequency of oscillations, and V0 is the scale for
suction velocity. The last equation in (12) is the

boundary condition for microrotation variable x	 that

describes its relationship with the surface stress. In this

equation, the parameter n is a number between 0 and 1
that relates the micro-gyration vector to the shear stress.

The value n ¼ 0 corresponds to the case where the

particle density is sufficiently large so that microelements

close to the wall are unable to rotate. The value n ¼ 0:5
is indicative of weak concentrations, and when n ¼ 1

flows are believed to represent turbulent boundary lay-

ers [12]. Outside the boundary layer, Eq. (7) is reduced

to

� 1

q
dp	

dx	
¼ dU 	

1
dt	

ð14Þ

Fig. 1. Physical model and coordinate system of the problem.
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We now introduce the dimensionless variables as fol-

lows:

u¼ u	

U0

; v¼ v	

V0
; y¼ V0

m
y	;

U1 ¼U 	
1

U0

; Up¼
u	p
U0

; x¼ m
U0V0

x	; t¼ V 2
0

m
t	; h¼ T �T1

Tw�T1
;

d¼ m
V 2
0

d	; j¼ V 2
0

m2
j	;

Pr¼ mqCp

k
¼ m

a
ðPrandtl numberÞ

Gr¼ mbfgðTw�T1Þ
U0V 2

0

ðGrashof numberÞ

R¼ kke
4rsT 31

ðRadiation parameter-defines importance
of radiation relative to conductionÞ: ð15Þ

Furthermore, the spin-gradient viscosity c; which defines
the relationship between the coefficients of viscosity and

micro-inertia, is given by:

c ¼ l
�

þ j
2

�
j	 ¼ lj	 1

�
þ 1

2
b

�
; b ¼ j

l
ð16Þ

where b denotes the dimensionless viscosity ratio.
In view of Eqs. (14)–(16), the governing Eqs. (7)–(9)

reduce to the following non-dimensional form:

ou
ot

� ð1þ eAedtÞ ou
oy

¼ dU1

dt
þ ð1þ bÞ o

2u
oy2

þ Grh þ 2b
ox
oy

ð17Þ

ox
ot

� ð1þ eAedtÞ ox
oy

¼ 1

g
o2x
oy2

ð18Þ

oh
ot

� ð1þ eAedtÞ oh
oy

¼ 1

C
o2h
oy2

ð19Þ

where

g ¼ lj	

c
¼ 2

2þ b
; C ¼ 1

�
� 4

3Rþ 4

�
Pr

The boundary conditions (12) and (13) are then given by

the following dimensionless equations:

u ¼ Up; h ¼ 1þ eedt; x ¼ �n
ou
oy

at y ¼ 0 ð20Þ

u ! U1 ¼ 1þ eedt; h ! 0; x ! 0 as y ! 1
ð21Þ

3. Solution

In order to reduce the above system of partial dif-

ferential equations to a system of ordinary differential

equations in dimensionless form, we perform an as-

ymptotic analysis by representing the linear velocity,

microrotation and temperature as

u ¼ u0ðyÞ þ eedtu1ðyÞ þOðe2Þ ð22Þ

x ¼ x0ðyÞ þ eedtx1ðyÞ þOðe2Þ ð23Þ

h ¼ h0ðyÞ þ eedth1ðyÞ þOðe2Þ ð24Þ

Substituting Eqs. (22)–(24) into Eqs. (17)–(19), neglect-

ing the terms of Oðe2Þ, we obtain the following pairs of
equations for ðu0;x0; h0Þ and ðu1;x1; h1Þ.
ð1þ bÞu000 þ u00 ¼ �Grh0 � 2bx0

0 ð25Þ

ð1þ bÞu001 þ u01 � du1 ¼ �d � Grh1 � 2bx0
1 � Au00 ð26Þ

x00
0 þ gx0

0 ¼ 0 ð27Þ

x00
1 þ gx1 � dgx1 ¼ �Agx0

0 ð28Þ

h00
0 þ Ch0

0 ¼ 0 ð29Þ

h00
1 þ Ch0

1 � dCh1 ¼ �ACh0
0 ð30Þ

Here, primes denote differentiation with respect to y.
The corresponding boundary conditions can be written

as

u0 ¼ Up; u1 ¼ 0; x0 ¼ �nu00;
x1 ¼ �nu01; h0 ¼ 1; h1 ¼ 1 at y ¼ 0 ð31Þ
u0 ¼ 1; u1 ¼ 1; x0 ! 0; x1 ! 0;

h0 ! 0; h1 ! 0 as y ! 1 ð32Þ

The solution of Eqs. (25)–(30) satisfying boundary

conditions (31) and (32) is given by

u0ðyÞ ¼ 1þ a1 e�h3y þ a2 e�Cy þ a3 e�gy ð33Þ
u1ðyÞ ¼ 1þ b1 e�h1y þ b2 e�h2y þ b3 e�h3y þ b4 e�h4y

þ b5 e�Cy þ b6 e�gy ð34Þ
x0ðyÞ ¼ c1 e�gy ð35Þ

x1ðyÞ ¼ c2 e
�h1y � c1

Ag
d
e�gy ð36Þ

h0ðyÞ ¼ e�Cy ð37Þ

h1ðyÞ ¼ e�h4y þ AC
d

ðe�h4y � e�CyÞ ð38Þ

where

h1 ¼
g
2
1

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4d

g

s #

h2 ¼
1

2ð1þ bÞ 1
h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4dð1þ bÞ

p i
h3 ¼

1

1þ b

h4 ¼
C
2

1

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4d

C

r !
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and

a1 ¼ Up � 1� a2 � a3

a2 ¼
�Gr

ð1þ bÞC2 � C

a3 ¼
2bg

ð1þ bÞg2 � g
c1

b1 ¼
2bh1

ð1þ bÞh21 � h1 � d
c2 � Hc2

b2 ¼ � 1ð þ b1 þ b3 þ b4 þ b5 þ b6Þ

b3 ¼
Ah3

ð1þ bÞh23 � h3 � d
a1

b4 ¼
�ðGr þ ðAC=dÞÞ
ð1þ bÞh24 � h4 � d

b5 ¼
ACGr

d
1

ð1þ bÞC2 � C

b6 ¼
Ag

ð1þ bÞg2 � g � d
a3

�
� 2bg

d
c1

�

c1 ¼
n

1þ bð1� 2nÞ ðUp

�
� 1Þ � Gr

C

�

c2 ¼
k1

1� nðh1 � h2ÞH

k1 ¼ c1
Ag
d

þ n½b3ðh3 � h2Þ þ b4ðh4 � h2Þ

þ b5ðC � h2Þ þ b6ðg � h2Þ � h2�

By virtue of Eqs. (22)–(24), we obtain the streamwise

velocity, microrotation and temperature in the boundary

layer. We can now calculate the skin-friction coefficient

at the surface of the porous plate, which is given by

Cf ¼
s	w

qU0V0
¼ ou

oy

����
y¼0

¼ �h3a1 � Ca2 � ga3 � eedt½b1h1 þ b2h2 þ b3h3
þ b4h4 þ b5C þ b6g� ð39Þ

We can also calculate the heat transfer coefficient at the

wall of the plate in terms of Nusselt number as follows:

Nu ¼ x
ðoT=oy	Þw
T1 � Tw

ð40Þ

NuRe�1x ¼ � oh
oy

����
y¼0

¼ C þ eedt h4 1

��
þ AC

d

�
� AC2

d

�

ð41Þ

where Rex ¼ V0x=m is the Reynolds number.

4. Results and discussion

The formulation of the problem that accounts for the

effect of radiation field on the flow and heat transfer of

an incompressible micropolar fluid along a semi-infinite,

moving vertical porous plate was accomplished out in

the preceding sections. This enables us to carry out the

numerical computations for the velocity, microrotation

and temperature fields for various values of the flow

conditions and fluid properties. In the calculations, the

boundary condition for y ! 1 is replaced by y ¼ ymax
where ymax is a sufficiently large value of the distance
away from the plate where the velocity profile u ap-

proaches a given free stream velocity. We chose ymax ¼ 6

and a step size Dy ¼ 0:001. Figs. 2–7 show representative
plots of the streamwise velocity and microrotation as

well as temperature profiles for a micropolar fluid with

the fixed flow conditions e ¼ 0:001, A ¼ 0 and t ¼ 1,

while n, d; b, R, Gr, Pr and Up, are varied over a range,

which are listed in the figure legend.

For the case of different values of Grashof number

Gr, the velocity profiles in the boundary layer are shown
in Fig. 2. As expected, it is observed that an increase in

Gr leads to a rise in the values of velocity due to en-
hancement in buoyancy force. Here the positive value of

Gr corresponds to cooling of the surface by natural

convection. In addition, the curves show that the peak

Fig. 2. Velocity profiles against spanwise coordinate y for dif-
ferent values of Grashof number Gr.

Fig. 3. Velocity profiles with different boundary conditions for

microrotation vector on the plate surface.
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value of the velocity increases rapidly near the wall of

the porous plate as Grashof number increases, and then

decays to the free stream velocity.

The velocity profiles against the spanwise coordinate

y for different values of the parameter ðnÞ in the

boundary condition for micro-gyration vector are

shown in Fig. 3. The results show that increasing values

of n-parameter results in an increasing velocity within
the boundary layer, which eventually approaches to the

relevant free stream velocity at the edge of boundary

layer. Such an increase in the velocity is expected as flow

transitions to turbulent regime characterized by n ¼ 1.

Typical variations in the temperature profiles along

the spanwise coordinate are shown in Fig. 4 for different

values of the Prandtl number Pr. As expected, the nu-
merical results show that an increase in the Prandtl

number results in a decrease of the thermal boundary

layer thickness and in general lower average temperature

within the boundary layer. The reason is that smaller

Fig. 6. Surface angular velocity versus viscosity ratio for dif-

ferent values of radiation parameter R.

Fig. 7. Effect of radiation parameter R on the velocity and

temperature profiles.

Fig. 4. Temperature distribution for different Prandtl numbers.

Fig. 5. Velocity and angular velocity profiles against spanwise

coordinate y for different values of viscosity ratio b.
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values of Pr are equivalent to increasing the thermal

conductivity of the fluid, and therefore heat is able to

diffuse away from the heated surface more rapidly than

for higher values of Pr. Hence in the case of smaller

Prandtl numbers the thermal boundary layer is thicker

and the rate of heat transfer is reduced.

The effect of viscosity ratio b on the streamwise ve-

locity and microrotation profiles is presented in Fig. 5.

From the numerical results we deduce that the velocity is

lower for a Newtonian fluid (b ¼ 0) for the same flow

conditions and fluid properties, as compared with a

micropolar fluid when the viscosity ratio is less than 1.0.

When b takes values greater than 1.0 (i.e., the gyro-

viscosity is larger than the translational viscosity),

however, the velocity distribution shows a decelerating

nature near the porous plate. In addition, the distribu-

tions of microrotation do not show consistent variations

with changing the viscosity ratio parameter (see Fig. 5b).

In order to elucidate the physical reasons for such a

behavior, we calculate the surface angular velocity on

the moving porous plate versus viscosity ratio b for

different values of the radiation parameter R in Fig. 6,

where it is seen that the critical value of the viscosity

ratio exists. It should be noted that transition is more

profound when radiation dominates heat conduction

(i.e., R is small). For different values of the radiation

parameter R, the velocity and temperature profiles are
plotted in Fig. 7. It is obvious that an increase in the

radiation parameter R results in decreasing velocity and
temperature within the boundary layer, as well as a de-

creased thickness of the velocity and temperature

boundary layers. This is because the large R-values
correspond to an increased dominance of conduction

over radiation thereby decreasing buoyancy force (thus,

vertical velocity) and thickness of the thermal and mo-

mentum boundary layers.

As shown in Fig. 8, it has been observed that for

given flow and fluid parameters, the effect of increasing

the plate moving velocity Up manifests in a linearly de-

creasing surface skin friction on the porous plate be-

cause of a decreased velocity gradient. It is also observed

that for the case of R ¼ 100, the magnitude of surface

skin friction coefficient is greater than that of R ¼ 10.

This provides a circumstance for existing of optimal

conditions for reducing skin friction on the plate.

Fig. 9 illustrates the variation of surface heat transfer

with the thermal radiation parameter R for several val-

ues of Prandtl number. Numerical results show that for

given flow conditions and fluid properties, which are

listed in the figure legend, the surface heat transfer from

the porous plate tends to increase (in absolute value)

when increasing the radiation parameter and Prandtl

number. This is because an increase in R and Pr values
results in smaller thermal boundary layers and thus

steeper temperature gradients near the wall.

5. Conclusions

We have examined the problem of an unsteady, in-

compressible mixed convection flow of micropolar fluid

past a semi-infinite porous plate whose velocity is

maintained constant in the presence of a radiation field.

The method of solution has been developed in the limit

of small perturbation approximation. Numerical results

are presented to illustrate the details of the flow and heat

transfer characteristics and their dependence on the flow

conditions and fluid properties. In particular, we found

that in a radiation-dominated problem (i.e., radiation

parameter R is small), thermal and momentum bound-

ary layers increase in size, thereby leading to enhanced

buoyancy-induced transport but decreased rate of heat

transfer at the wall. We also found that there is an op-

timal value of radiation parameter that results in a

minimum friction at the surface of the wall.

For better understanding of the fluid-mechanical and

thermal behavior of this flow problem, however, it may

be necessary to perform the experimental works. In the

near future we would be glad to compare these analytical

results with those obtained by anyone in the same field.
Fig. 8. Effect of thermal radiation parameter R on the surface

skin friction for different plate moving velocity Up.

Fig. 9. Effect of thermal radiation parameter R on the surface

heat transfer for different Prandtl numbers.
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